
AG0902A – 3D Graphics Programming

Real Time 3D Procedural Terrain Modelling

By Vladeta Stojanovic
(0602920@live.abertay.ac.uk)

mailto:0602920@live.abertay.ac.uk


Introduction

This  report  provides  an  overview  of  the  design  and  development  of  the  Tropical  Island 
Generator  application for the second semester coursework of  the AG0902A 3D Graphics 
Programming module. The report also describes the theory behind the key algorithms used in  
the development of the application.

The Tropical Island Generator (abbreviated from now on as TIG) application was designed to 
demonstrate the key concepts behind real  time 2D & 3D procedural  generation of terrain 
meshes.  The  area  of  real  time  procedural  content  generation  is  becoming  increasingly 
popular as interactive 3D applications become more complex and the hardware that runs 
them becomes more powerful. 
The main use of  procedural modelling in terms of computer games, 3D applications and 
other interactive media is that is allows for the generation of both 2D and 3D data (either 
offline or in real time), that would otherwise be costly or time consuming to produce manually  
(or in some cases the sought after data would be unavailable). The procedurally generated 
content can be anything from 2D textures and 3D mesh data, to animation and sound data, 
and even certain game logic elements (like AI routines that rely on pre-existing input data).

However, the most poplar use of procedural modelling in interactive 3D applications is in the 
filed of terrain generation. Procedural modelling of terrains allows for the creation of realistic  
scenes that can depict anything from a topologically common terrain to an alien landscape,  
along with generation of naturally occurring elements such as vast mountain ranges, erosion,  
glaciers, hills, canyons, lakes and islands. Procedural modelling can also be used to generate  
trees,  vegetation,  water,  clouds  and  other  natural  phenomena  that  can  populate  and 
compliment the generated scene. 
The  complexity  of  these  scenes  can  be  anything  from  a  simple  512x512  procedurally 
generated coherent  noise terrain mesh in a 3D game or application,  to a highly  complex 
fractal based terrain model that can only be rendered offline and requiring vast amounts of 
computational power. 

The  main  requirement  for  the  TIG  application  was  the  procedural  generation  of  terrain 
meshes. The TIG application demonstrates by procedurally generating and texturing an island 
terrain mesh, along with a water mesh and a skybox, as well as the random placement of 3D 
palm tree models at certain elevations on the terrain mesh.  The tree model data is hard 
coded into the application and all of the textures are generated procedurally, thus no external  
2D or 3D data used. The application then allows the user to move around and inspect the 
generated 3D scene. 

The  application  was  programmed  using  the  provided  framework,  which  makes  use  of 
OpenGL 3.3 and Win32. LibNoise (http://libnoise.sourceforge.net) was also used extensively 
for the procedural  generation of  the terrain  3D mesh data,  as well  as the water  and the 
skybox 2D texture  data.  The application  makes use  of  vertex  and  fragment  shaders  for  
lighting and texturing of the 3D scene, and the animated displacement of the water mesh (in  
order to simulate wave motion). 

http://libnoise.sourceforge.net/


Overview of Noise Generation

The definition of noise can be broadly interpreted depending to what medium it is applied to. 
In terms of 2D and 3D computer graphics, specifically procedural modelling, noise can be 
defined as a randomly generated array consisting 1D, 2D or 3D coordinate values. Though 
noise itself is a function, and not a primitive, the generated values can be thought of as a 
primitive.  The actually definition of noise can often be confusing to define, as there are many  
different noise functions that can be used for the generation of noise primitives. 

However, the standard interpreted definition of an ideal noise function (Peachey, 1998 and 
Rost, 2008) can be defined as:

- Being able to create repeatable stochastic values based on the given input values.
- Having a high-precision floating point output range from -1 to 1.
- Being band-limited, with a maximum frequency of 1.
- Not showing regular patterns or periods after repeated generation.
- Being stationary, where the small floating point value of the function is independent of 

its  large  scale  position  (depending  on  its  application,  i.e.  stationary  in  it’s  size 
regardless if it’s used to generate a random blade of grass or an entire planet). 

- Being  rotationally  invariant,  meaning  that  its  value  is  uniform  in  all  orientations 
regardless of direction.  

- Being able to be defined in multiple dimensions.

The values of the generated coordinates are based on a given input to the noise function that 
acts as a filter for creating repeatable stochastic values.  A coherent  noise function when 
analysed will present the following five properties (Bevins, 2005):

1) Passing in the same input value will generate the same output value.
2) Passing in an input value with a small change will generate an output value with a 

small difference.
3) Passing in an input value with a large change will generate an output value with a 

random difference.
4) Depending on the size of the dimension of the noise function, the size of the input  

dimension must be the same. 
5) The returned output value is a scalar value.

A one-dimensional non-coherent noise function (defined as  f(x)), will  produce the following 
result on a 2D graph:



The non-coherent  nature of  the undefined noise function above shows that  non-coherent  
noise is not suited for use in procedural generation due to the normalized high-frequency of  
the outputted value. The non-coherent appearance of the above noise function occurs  in 
non-stationary and variant coordinate noise functions. 

There  are  many  different  noise  function  implementations  available,  and  some  give  very 
similar  results.  Notable  noise  functions  include  lattice  noise,  value  noise,  gradient  noise, 
value-gradient  noise,  lattice-convolution noise,  sparse-convolution noise and most  notably 
Perlin noise (as well as a few others not mentioned here).  
Since there are so many different noise functions, sometimes it can be hard to differentiate  
between them. For the sake of clarity, the use of noise functions that were used in the TIG 
application make use of coherent noise combined with other different noise modules (such as 
Perlin noise). Coherent noise can be thought of as a template noise function from which other 
noise functions can be derived and combined with, in order to form the final desired  noise 
value coordinates. Since coherent noise is very similar to value noise, the operation of the 
value noise function can be used as a basis for explaining how coherent noise works. 

A value noise function is constructed by using  pseudo-random  points at each lattice point. 
The given value noise function can then be interpolated from these random values. The lattice 
grid  for  the value noise  function  is  constructed by uniformly distributing  pseudo-random 
number values at every point in texture space whose coordinates values are whole numbers 
(integers). This in turn makes up a sort of net of integer points that can be interpolated across 
to produce a coherent noise output value. Pseudo-random values in the range fro -1 to 1 are 
assigned to each integer lattice point and are interpolated, and in the case of the examples 
below,  along the x-axis (Peachey 1998).

The quality of the noise function output largely depends on the type of interpolation that is 
used to interpolate between each point in the given axis. This along with the varying values of 
frequencies and amplitudes is used to create various different noise functions (Rost 2008).

Now to move onto the actual  representation of  a continuous 1D coherent  noise function, 
below is an example of a generic value noise function in the range of -1 to 1:



By altering  the frequency,  amplitude,  octaves and persistence of a given coherent noise  
function, new noise functions can be derived. 
The frequency of the given coherent  noise function is used to define the number of cycles of  
unit length the noise function will output. A cycle is defined as point on the x-axis where the 
graph noise function intersects.  
One point to note is that the output value of a coherent noise function may or may not cross  
the x-axis (go above or below zero) during the middle of a cycle. Thus the frequency of a 
coherent  noise  function  is  non-conforming  in  terms  of  cycles,  unlike  the  sine  or  cosine 
functions  (Bevins 2005).

Increasing or decreasing amplitude of a coherent noise function alters the maximum absolute 
value range that the function can output. The typical noise amplitude value is in the range  
from -1 to 1 (as for the value noise function and most examples of coherent noise). The 
generated output values are placed within the given amplitude bracket.

Below are examples of a coherent noise function with different frequencies and amplitudes:



One way to model Perlin-like noise using coherent noise functions is by representing each 
different coherent noise function as an octave. This terminology is used because in terms of  
coherent noise functions, each successive function has double the frequency of the previous 
coherent  noise  function.  Thus  when modelling  a  coherent  noise  function,  the  number  of 
octaves for that function can be used to control the amount of detail of the generated noise. 

Below is an example of a coherent noise function with increasing octaves:

Likewise,  persistence  in  a  coherent-noise  function  is  used  to  define  how quickly  the  the 
amplitudes (maximum absolute output value bracket) diminish for each iteration of an octave 
(coherent noise function) that is used to model the Perlin-like noise function. The amplitude of  
each iteration of an octave is equal to the product of the previous iteration of the octaves 
amplitude and persistence values.  Thus increasing the value of  persistence creates more 
rougher and detailed noise output for the Perlin-like noise function (Bevins 2005). 

In  terms  of  generating  Perlin-like  noise  from  coherent  noise  functions,  the  constructed 
coherent noise function can be defined as a product of a number of coherent noise functions 
(octaves) with infinitely increasing frequencies and amplitudes.  



Below is an example of a coherent noise function series (which can be referred to as a series  
of  octaves),  that  can  be  used  to  form the  final  noise  value  output  of  a  Perlin-like  noise 
function:

Though this is not real Perlin noise (thus why it was being referred to as Perlin-like noise). 
Instead,  this  combination  of  various  coherent  noise  functions  is  often  referred  to  as 
“Fractional Brownian Motion” (FBM). FBM is based on the Gaussian process, which is used 
for generation and normal distribution of random values. It is in essence an imitation of Perlin 
noise, but less expensive to compute. LibNoise can combine FBM noise functions with other 
noise functions, such as the Perlin noise function, in order to generate pleasing noise data. 

A brief overview of real Perlin noise

Noise can be mapped in multiple dimensions, from R to R^n. The most common dimensions 
for mapping noise are R^2 (2D) and R^3 (3D). 3D noise (often referred to as solid-noise), is 
used for generating continuous procedural textures for 3D objects. The main property of 3D 
noise is that it  does not cause any artefacts (such as texture seams, often found in non-
continuous texture maps) in the UV texture coordinates of the textured object. Thus an object 
that is textured using 3D noise will have a coherent noise value for each of the texels in the 
local 3D space of the applied object texture.

As mentioned before, noise is band limited, and is concentrated in a very small frequency 
spectrum, usually in the range form -1 to 1. Change in high and low frequencies doesn't  
change the range of the spectrum that the noise is concentrated in. Noise is required to be 
random, but in order to use it as a modelling primitive, it must be applied to a given point in 
R^n space. Again, remember the previous definition of a noise function being stationary and 
rotationally invariant. This means, in terms of Perlin noise, that regardless of the point in R^n  
that the noise function is applied to, it's spectrum (range) does not change.

From now on, for simplicity, it is assumed that the Perlin noise function being described is 
used to create a 2D noise map (Thus it is defined in R^2 space). 

Given that a Px is a vector value point in R^n (in this case presumed to be in R^2), applying 
the function called  noise() to Px as  noise(Px)  will alter the value of Px based on the input 
parameters of the noise function. Likewise, increasing the size of Px will generate that many 
more  frequencies  when applied  to  the  noise  function  as  noise(n.Px),  with  the  frequency 
parameter in the noise function is defined as:  frequency = n. 



Going back  once again  to  what  was said  about  value noise,  the given  noise  function  is 
constructed by using pseudo-random points at each generated lattice point. Perlin noise uses 
the methodology a bit differently, as the pseudo-random points are presented in a form of a 
spline approximation at each corner point of the generated lattice. This provides the Perlin  
noise function with a distinct advantage of being able to interpolate pseudo-random values at 
arbitrary points on the spline,  without having to pre-compute these values over the entire 
lattice or some other volume defined in R^n. 

The lattice generated by the Perlin noise function exists in the space of R^n (in this case 
R^2), that is divided into a regular grid of cells (the grid is square for R^3 and a volume cube 
for R^3). Given an input value, defined as P, the Perlin noise function will look at each of the  
surrounding  grid  points,  where  the  size  of  the  grid  points  around  P  depends  in  what 
dimension P is defined in. For the given size of R^n, P will have 2^n surrounding grid points. 

For simplicity, P can be thought of as single dot of noise the size of a pixel in a 2D noise map. 

Below is the first picture illustrating P defined in R^2:

There are two ways to compute the pseudo-random noise values (referred to as gradient 
noise values). The first way makes use of bi-cubic and tri-cubic spline interpolation (for R^2 
and R^3), along each of the gird points around P (Perlin 1983). The other way involves using 
wavelet  functions  along  each  of  the  grid  points  around  P  to  in  order  to  interpolate  the  
generated gradient  values (Perlin  1998).  Wavelets  can be used instead of  splines,  but  it 
beyond the scope of this report to explain how they function, so the Perlin's original method 
using spline interpolation from each grid point around P will be explained instead. 



Now going back to the original definition of P defined as a point in R^2, each surrounding grid  
point around P is defined as Q. For each of  the grid  points around P, a pseudo-random 
gradient vector G is computed. The same value gradient vector is computed for all instances 
of Q (all surrounding grid points around P). 

The inner product is then computed as:

This gives the value at P of the above linear function with a gradient value of G, which has a  
value of zero at grid point Q (Perlin 1999). If the noise function is defined in R^2, there are 
2^2 grid points to evaluate around P. A linear gradient value based on G is constructed from 
any of the surrounding grid points (via the above linear function).

After the gradient value of G for the given instance of Q is computed, a “drop-off filter” is 
applied to the gradient line function from Q (Perlin 1999). The drop-off filter is the parametric  
S-shaped curve. It's purpose is to make the value of G drop off to zero at the unit distance to  
the next grid point.
The drop-off filter is constructed using two cubic S-shaped curves. The curve is defined as:

And looks like this:



The number of curves used by the filter is once again dependent of the size of R^n. For 2D 
noise, as used for this explanation, two curves are needed for each of the axis (x and y). If the  
noise function was defined in R^3, a third curve would be needed for the z-axis. 

Below is an example of how this curve looks when applied to G:

An additional “weighting filter” is applied to the linear gradient value of the grid point. This 
linear interpolation is defined as 2^n -1 (corresponding to R^n), with each curve defined as 
n.S for each instance of Q, which is defined as 2^n (again, based on the initial definition of  
R^n). The linear weighting function then clamps the starting value of the curve from Q to zero  
along G. The constructed spline is then used to interpolate the value of G from the zero value 
of the spline starting at Q, to the maximum absolute value of the spline,  and down again to 
the drop-off value, which saturates to zero. This is done for each of the neighbouring grid  
points around P. The gradient value of G is then interpolated along each of the splines from  
each of the grid points that are an instance of Q. 

The above computation must be done very quickly, since the noise function has to be iterated 
many times, for each input point (Perlin 1999).

A noise function  will  eventually  repeat  it's  values,  but  only  after  a  long distance  (of  unit 
measurement), thus it's repeated values are not really noticeable. The lattice generated for 
each point P is constructed with 256x256 grid points ( and 256x256x256 for R^3).  A pre-
computed table of gradient values can be used, containing 256 pseudo-random coefficient 
values, from which  the Perlin noise function maps the values of I & J (I & J corresponding to  
the x  & y  values of  the given  lattice  point)  along the given spline into  a  unique number 
between 0 and 255. 



The pre-compute table of gradients can be found using a Monte Carlo simulation. A Monte 
Carlo  simulation  is  an  algorithm making  use  of  repeated  random sampling  to  output  it's 
results. In terms of implementation of the Monte Carlo simulation for computing the table of 
gradients for Perlin noise,  the 256 gradient  vectors are derived from uniformly distributed 
points on the surface a of a sphere (defined by a parametric sphere equation, whose unit  
radius is defined as 1.0).

Each point on the sphere surface represents a vector with a uniformly random direction. The 
uniform distribution of points on the sphere surface is computed via the following conditions 
(Perlin 1998):

– Choose points uniformly within the cube, whose range is defined as [-1...1]^3.
– Discard any points outside the unit radius of the sphere. 
– Project remaining points onto the sphere surface. 

This  is  done  for  x,  y  and  z  coordinates,  but  if  it's  only  being  used  for  2D noise,  the  z  
coordinate  values  can  be  discarded.  This  instance  of  the  Monte  Carlo  algorithm can  be 
defined mathematically as:

This can be expressed in pseudo-code (Perlin 1998):

for 'i' in [0 to 255]
repeat

x = random[-1 to 1]
y = random[-1 to 1]
z = random[-1 to 1]

until x^2 + y^2  + z^2 < 1.0
G[i] = normalize [x, y, z]

The generated 256 values are then normalized. The actual interpolated noise value for point 
P is computed relative to the centre of the spline. This value is derived from the gradient value 
lookup table set by the vector G as it drops off to zero.

The final computed value for 2D noise defined in R^2 is given by the sum of the four spline 
interpolation values for the given input values of the x and y coordinates.  In terms of mapping 
these values as UV texture coordinates on a 2D bitmap array, the transfer of the noise value 
for each input point (in this case a pixel) can be defined as the value of the constructed spline, 
S, with gradient values ijk, at a given point with input coordinates x and y:

Where the drop-off value for each component of the UV map is given by the cubic spline 
approximation defined as: drop(t) = 1 – 3(t)^2 + 2(t)3, where the returned value is zero if t > 1
(Perlin 1999).

Since the noise function mapping is done only 2D, the W component of the UVW map can be 
disregarded. Ideally, no matter if a 1D, 2D or 3D  dimensions are defined, for the Perlin noise 
function is by default defined in R^3 space (even though the above explanation is only relative  
to R^2 space). 



The above images are rendered using the Photoshop cloud and difference could filters, which 
are essentially the alterations of the Perlin noise functions sum 1/f(noise) and 

sum 1/f(|noise|).



Overview of Fractals

Fractal  geometry,  in  terms  of  computer  graphics,  is  used  to  map  chaotic  and  complex 
patterns into a series of geometric primitives consisting of theoretically infinite depth.
Fractal patterns are often found in nature, thus the procedural modelling of 2D and 3D data 
based on fractal generation algorithms can be  used to create realistic natural elements such 
as  chaotic  and  random displacement  of  terrain  geometry.  The  key  to  understanding  the 
nature of fractals is to understand that in terms of visual complexity,  a fractal has infinite 
complexity,  but  at  different  scales.  Thus  why  images  generated  using  fractal  rendering 
algorithms can theoretically create an infinitely complex amount of detail per each iteration. 

Fractal geometry is projected in a spatial dimension. A fractal spatial dimension can have a 
real  number value, such as 1.8 or 2.7. These real values of fractal  dimensions provide a 
continuous “slider” for the visual complexity of the generated fractal (Musgrave 1998). Thus 
fractals can exist in infinite dimensions with infinite complexity 

The operation of a fractal relies on a basis function. The basis function is used to generate a 
result that is repeated and scaled at infinite complexity. The basis function should return a 
particular result, and should ideally have the following features:

– It should be controllable
– It should be self-similar
– It should be deterministic

These features are very similar  to the outlined requirements for the ideal noise function, that 
was described at the beginning of this report. Therefore the use of a noise function as the 
basis function for the generation of a fractal is a good choice. 
The common basis functions used for fractal  generation are Perlin noise and FBM noise 
functions.  Thus  fractals  can  be  used  to  procedurally  generate  extreme  complexity  using 
relatively simple basis noise functions. Discussion of the mathematical properties of fractals is 
omitted from this report, since fractals are heuristic, understanding the underlying maths is not 
necessary  for  their  application.  However,  further  research  into  mathematical  theory  and 
implementation of fractal geometry generation algorithms is highly recommended. 
Below is an example of a Koch snowflake fractal:

The Koch snowflake was one of the earliest discovered fractals. Along with the  Sierpinski 
gasket (described below), it is one of the most commonly modelled fractals.



Another very simple example of 2D fractal rendering can represented using the traditional  
example of a 2D  Sierpinski gasket. The  Sierpinski gasket is based on a fixed point base 
function  that  constructs  a  self-similar  fractal  representation  per  iteration.  Thus,  the  2D 
Sierpinski  gasket  can be rendered at  any set  zoom level.  Below is  an example of  a  2D 
Sierpinski gasket fractal rendered in OpenGL (at varying complexities):

The actual gasket drawing function  increments the complexity of the gasket recursively. This 
is an example of where the fractal base function is the fractal itself:

void DrawGasket(point2 a, point2 b, point2 c, int m)
{
    point2 v0, v1, v2;
    int j;
    if(m>0) 
    {
        for(j=0; j<2; j++) v0[j]=(a[j]+b[j])/2;
        for(j=0; j<2; j++) v1[j]=(a[j]+c[j])/2;
        for(j=0; j<2; j++) v2[j]=(b[j]+c[j])/2;
        DrawGasket(a, v0, v1, m-1);
        DrawGasket(c, v1, v2, m-1);
        DrawGasket(b, v2, v0, m-1);
    }
    else(triangle(a,b,c)); 
}

The  Sierpinski gasket is a very simple example of a fractal, as it's recursive generative nature 
is due to the fractal  algorithm having a fixed geometric replacement rule.  These types of 
fractals  have  a very  artificial  appearance  are  are useful  for  procedurally  generating  non-
organic models.  Potential future investigations for demonstrative purposes could include the 
application of a noise function as an addition to the recursive gasket generation base function. 
The full example program is included with the accompanying source material for this report.



In terms of the the application of noise based fractal modelling for the development of the TIG 
application, one of the main noise generation modules used from NoiseLib was the Ridged-
Multifractal noise module (along with the Perlin Noise, Billow and Scale Bias noise modules).  
The  Ridged-Multifractal noise module is very similar to Perlin noise, but the key difference is 
that the  Ridged-Multifractal noise module does not make use of persistence.  Instead, it uses 
the values of previously generated octaves, which are then modified by an absolute value 
function, and the noise map is generated in a recursive manner. Additionally, the bandwidth of 
the   Ridged-Multifractal noise module is not guaranteed to output values in the range from -1 
to 1. This in turn allows for the procedural modelling of ridges based on the generated noise  
map, although for the TIG application, this noise module is used sparingly. 

Another procedurally generated feature of the TIG application is the water texture. The main 
visual component of the generated water texture is a Voronoi cell based noise map (along 
with the turbulence and scale point noise modules). Voronoi cells (sometimes refereed to as a 
Voronoi diagram),  are used to produce polygon formations,  by randomly scattering “seed 
points” in the given space coordinates, which are used to form the cells of the Voronoi cell  
map. A single Voronoi cell unit region contains all the points that are closest to specific seed 
point. The displacement value of each seed point is pre-set and used with the the random 
value modifier in the module. 
The seed points are placed randomly within each unit space defined in R^n (in the case of the 
default  function R^3,  thus the seed points are placed randomly within a unit  cube).   The 
frequency value of the seed points is also modified in order to change the distance between 
the  seed  points  (this  determines  how  tightly  packed  the  cells  in  the  map  will  appear).  
Additionally, the displacement value is used to modify the range of random values that are 
assigned to each cell. The higher the displacement value, the more intense the cell border 
outlines become. Below are examples of four different generated water maps by the TIG 
application,  each  with  the  same set  frequency  value  of  8,  but  the displacement  value  is 
increased for each, going from 0, 0.25, 0.5 to 1 (clockwise):



Below are examples of the three main randomly generated procedural  textures by the TIG 
application, along with their pre-set values:

Terrain texture (based on generated heightmap values used to displace the terrain  
vertex data):

– Size: 512x512
– Modules used: Ridged-Multifractal, Billow, Scaled Bias, Perlin Noise
– Octaves: 10
– Base frequency: 2
– Frequency: 0.4
– Persistence: 0.25
– Lower and upper X coordinate values: 10 to 20
– Lower and upper Z coordinate values: 7 to 25



Water texture:

– Size: 512 x 512
– Modules used: Voronoi, Scale Point, Turbulence
– Voronoi frequency: 8.0
– Voronoi displacement: 0
– Turbulence noise power: 1.0 / 32.0
– Turbulence roughness: 1



Skybox texture:

– Size: 512x512
– Modules used: Billow, Turbulence
– Billow frequency: 2.0
– Billow persistence: 0.375
– Billow lacunarity: 2.121
– Billow octave count: 4
– Turbulence frequency: 16.0
– Turbulence power: 1.0 / 64.0
– Turbulence roughness: 2.0



Framework Overview

This section of the report provides a brief overview of the TIG application framework design.  
The TIG application was developed based on the provided framework, which makes full use  
of OpenGL 3.3 and interfaces with Win32 as the native windowing environment. The given 
Framework also has support for DirectInput, but this was not enabled in the TIG application in 
favour of using the traditional Win32 API input interface. 

The following features were designed, developed and tested for the the given framework:

– Implementation of custom GLSL shader based rendering techniques.
– Coherent noise generation module making use of LibNoise.
– Optimized terrain generation interface (custom GLSL shader based rendering).
– Water  mesh  generation  and  rendering  interface  (custom  GLSL  shader  based 

rendering).
– Skybox generation and rendering interface (custom GLSL shader based rendering).
– Custom camera interface .
– Embedded mesh data format interface for the generation and rendering of palm trees.
– Palm tree generation and rendering interface.
– Expanded texture loading routines to add support  for loading and rendering 24bit 

BMP textures.
– A default  terrain generation interface (“dummy interface”),  used as a place holder 

interface for that other terrain generation interfaces inherit  their virtual functionality 
from. 

Below is a UML diagram showing the high-level overview of the constructed framework :



Terrain Generation Implementation 

The terrain generation interface consists of three core interfaces:

1) The  default  terrain  rendering  interface  from  which  the  coherent  noise 
generation interface inherits the class attributes from. Currently, the default 
terrain interface (called DefMethod.h)  is just a place holder. 

2) The coherent  noise interface (CoherentNoise.h).  This  interface is  used  to 
procedurally generate the terrain displacement and texture data. Makes use 
of LibNoise.

3) The  terrain  generation  interface  (TestTerrain.h).  this  interface  is  used  to 
construct the terrain geometry (using the GLBatch interface from GLTools). 
The constructed terrain geometry can then be rendered using custom GLSL 
vertex and fragment programs, once it is instanced and initialized in the main 
ShaderApp.cpp framework implementation.

The terrain data is constructed with the following implementations in the TestTerrain interface:

CoherentNoiseTerrain gCoherentNoiseTerrain(512);

TestTerrain::TestTerrain()
{

//stepsize for texcoord incriment
float textureCoordIncriment = 1.0 
/gCoherentNoiseTerrain.ReturnSize();

for(int j=0; j<gCoherentNoiseTerrain.ReturnSize(); j++)
{

//i=x
for(int i=0; i<gCoherentNoiseTerrain.ReturnSize(); i++)
{

vTexCoord[i][j][0] = textureCoordIncriment*i;
vTexCoord[i][j][1] = textureCoordIncriment*j;

vNormal[i][j][0] = 0.0f;
vNormal[i][j][1] = 1.0f;
vNormal[i][j][2] = 0.0f;

}
}

//initialize rand
srand ( time(NULL) );

}



void TestTerrain::ReGenerate()
{

//our vectors to calculate the normals.
M3DVector3f vector1, vector2, normal;

///////////////////////////
//Generate terrain here
///////////////////////////
gCoherentNoiseTerrain.MultiFractalPerlin(10, 2, 0.4, 0.25, 10, 

20, 7, 25);

//get the field height
for(int i = 0; i < gCoherentNoiseTerrain.ReturnSize() ; ++i)
{

for(int j = 0; j < gCoherentNoiseTerrain.ReturnSize(); +
+j)

{
mYField[(j * gCoherentNoiseTerrain.ReturnSize()) + 

i] = gCoherentNoiseTerrain.mfField[(j * 
gCoherentNoiseTerrain.ReturnSize()) + i];

}
}

for(int j=0; j<gCoherentNoiseTerrain.ReturnSize(); j++)
{

//i=x
for(int i=0; i<gCoherentNoiseTerrain.ReturnSize(); i++)
{

vVertex[i][j][0] = i;
vVertex[i][j][1] = mYField[(j * 512) + i];
vVertex[i][j][2] = j; 

}
}

//normals.
for(int j=0; j<gCoherentNoiseTerrain.ReturnSize(); j++)
{

//i=x
for(int i=0; i<gCoherentNoiseTerrain.ReturnSize(); i++)
{
  //create vector1 (above subract vector below)
  m3dSubtractVectors2(vector1, vVertex[i][j+1], 

vVertex[i][j-1]);
  //create vector2 (left subtract right)
  m3dSubtractVectors2(vector2, vVertex[i-1][j], 

vVertex[i+1][j]);
  //cross product
  m3dCrossProduct3(normal, vector1, vector2);
  //normalise
  m3dNormalizeVector3(normal);

//set normal
vNormal[i][j][0] = normal[0];
vNormal[i][j][1] = normal[1];
vNormal[i][j][2] = normal[2];

}
}

}

The TestTerrain::Render() function is called in ShaderApp.cpp (using custom GLSL shaders).



Tree Mesh Rendering

One of the main features of the TIG application is that all of the application data is generated 
by the application, and no external data is used (though external shader programs are used, 
but these don't really count as data). In order to complement the generated 3D scene, 3D 
models of palm trees are generated, placed and rendered in the scene. 

The palm tree interface consists of two interfaces:

1) The palm tree data interface (PalmTreeData.h).  this interface contains the 
hard coded vertex and normal vector data used to generate the palm tree 
geometry.

2) The tree generation interface (TreeClass.h), where the data interface from 
PalmTreeData,h is sued to construct a very simple model frame structure that 
gets generated into geometry and rendered via the GLBatch interface. Unlike 
the rest of the geometry interfaces in the TIG application framework, the palm 
trees  are  rendered  using  built  in  shader  programs  via  the  GLTools 
shaderManager interface. 

The palm tree data is generated in much the same way as the terrain data, by passing in the 
vertex  and  normal  data  from  the  tree  model  frame  into  the  GLBatch  palmLeaves  and 
palmBases objects. The GLBatch objects are then rendered in ShaderApp.cpp, using built in 
stock shaders from GLTools. 
However, the key logical consideration for the generation and rendering of the tree data is 
how the tree's are placed on the terrain. The PlaceTreeBatch() function from the TreeClass 
interface is used to randomly place 1024 trees across the the terrain grid, taking in the initial 
starting function argument variable batchPos as the starting point on the given terrain grid 
from where batch is placed. 
The tree batch can be thought of as a 512x512 square, consisting of 1024 randomly placed 
trees  within  in  it,  that  is  rendered  over  the  terrain,  with  the   batchPos variable  used  to 
determine the origin of the batch square. 

void PalmTrees::PlaceTreeBatch(float batchPos) 
{

GenerateTree();

for(int i = 0; i < 1024; ++i)//Set x,y,z coordinates of each 
tree

{
mX[i] = ((GLfloat)((rand() % 512 + 1 * batchPos)));
mZ[i] = ((GLfloat)((rand() % 512 + 1 * batchPos)));
mY[i] = 18.0f;

}
}



However, another logical problem exists once the trees have been placed on the terrain. The 
initial height of the trees is set to 18.0f units. The problem presented by placing the trees in 
this manner is that the 1024 trees will be drawn over the terrain, regardless of the of whether 
or not they are being drawn over the island terrain mesh,  or the island water mesh. 
Leaving this problem unfixed would result in unrealistic looking terrain, with palm trees being 
placed over water. 

Fortunately  a  simple  solution  was  implemented  that  would  solve  this  problem.  In 
ShaderApp.cpp, where the palm trees get drawn and when the palm trees first get initialized, 
another function (part of the ShaderApp interface), called CalcTreePlacement is called:

void ShaderApp::CalcTreePlacement()
{

gTrees.PlaceTreeBatch(0.01f);

for(int i = 0; i < 1024; ++i)
{

if(g_Terrain.GetYFieldVertValue(gTrees.mX[i],gTrees.mZ[i])  > 
   14) //current elevation restriction is 14. Trees placed on 
any point in the map below the value of 12 won't get rendered.

{
treeValid[i] = true;

}
else
{

treeValid[i] = false;
}

}
}

The CalcTreePlacement() function takes  the x and z coordiantes of each placed tree in the 
grid, and compares the height of the point on the terrain mesh where the given tree is placed. 
If  the elevation of the given terrain point is greater then 14.0f units (well  above the water 
level), the treeValid[] static boolean array variable for that tree is set to true. The treeValid[]  
static boolean array variable has 1024 elements, with each element representing the drawing  
condition of each tree. If the placed tree intersects the pre-set valid height value on the given 
terrain grid point, then that tree can be drawn, or otherwise it doesn't get drawn. 

//First the palm leaves
for(int i = 0; i < MAXTREES ; ++i)
{

TreeMVMatrix.PushMatrix();
TreeMVMatrix.Translate(gTrees.mX[i], gTrees.mY[i], 

gTrees.mZ[i]);
TreeMVMatrix.Scale(0.25f, 0.25f, 0.25f);

shaderManager.UseStockShader(GLT_SHADER_POINT_LIGHT_DIFF, 
treePipeline.GetModelViewMatrix(), 

treePipeline.GetProjectionMatrix(), vLightEyePos, vLeafColor);
if(treeValid[i])
{

gTrees.DrawTreeLeaf();
}

TreeMVMatrix.PopMatrix();
}



//Then the trunk
for(int j = 0; j < MAXTREES ; ++j)
{

TreeMVMatrix.PushMatrix();
TreeMVMatrix.Translate(gTrees.mX[j], gTrees.mY[j], 

gTrees.mZ[j]);
TreeMVMatrix.Scale(0.25f, 0.25f, 0.25f);

shaderManager.UseStockShader(GLT_SHADER_POINT_LIGHT_DIFF, 
treePipeline.GetModelViewMatrix(), 

treePipeline.GetProjectionMatrix(), vLightEyePos, vTrunkColor);
if(treeValid[j])
{

gTrees.DrawTreeTrunk();
}

TreeMVMatrix.PopMatrix();
}

Water Mesh Rendering

The  TIG  application  also  demonstrates  the  rendering  of  simple  water  bodies  using 
procedurally generated textures and animated displacement of water. The water mesh is part  
of  the  Water.h  interface.  The  water  mesh itself  is  just  a  512x512  triangle  plane,  and  is  
constructed in the same way as the rest of the geometry data in the TIG application. 

The interesting part of the water rendering feature is that the water body is rendered and 
displaced using a custom GLSL vertex shader. The vertex shader continually displaces the 
water mesh data, per-vertex and per-frame, using a simple sine wave equation. 

The sine wave equation is defined as:

This is implemented in the Water.vp vertex shader :

#version 130

in vec4 vVertex;
in vec3 vNormal;
in vec4 vTexture0;

uniform float fTime;
uniform float fWaveSpeed;
uniform mat4   mvpMatrix;
uniform mat4   mvMatrix;
uniform mat3   normalMatrix;
uniform vec3   vLightPosition;

smooth out vec3 vVaryingNormal;
smooth out vec3 vVaryingLightDir;
smooth out vec2 vTexCoords;



void main(void) 
{

vec4 v = vec4(vVertex);

v.y = sin(0.5*v.z + fTime*fWaveSpeed)* 0.5;

    vVaryingNormal = normalMatrix * vNormal;

    // Get vertex position in eye coordinates
    vec4 vPosition4 = mvMatrix * vVertex;
    vec3 vPosition3 = vPosition4.xyz / vPosition4.w;

    // Get vector to light source
    vVaryingLightDir = normalize(vLightPosition - vPosition3);

    // Pass along the texture coordinates
    vTexCoords = vTexture0.st;

    gl_Position = mvpMatrix * v;
}

And the fragment shader is used to calculate the fragment colour based on the procedurally  
generated  water  texture  (note  that  the  specular  component   of  the  final  colour  is  not 
calculated):

#version 130

out vec4 vFragColor;

uniform vec4      ambientColor;
uniform vec4      diffuseColor;   
uniform sampler2D colorMap;

smooth in vec3 vVaryingNormal;
smooth in vec3 vVaryingLightDir;
smooth in vec2 vTexCoords;

void main(void)
    { 
    
    // Dot product gives us diffuse intensity
    float diff = max(0.0, dot(normalize(vVaryingNormal), 
normalize(vVaryingLightDir)));

    // Multiply intensity by diffuse color, force alpha to 1.0
    vFragColor = diff * diffuseColor;

    // Add in ambient light
    vFragColor += ambientColor;

    // Modulate in the texture
    vFragColor *= texture(colorMap, vTexCoords);

    }



Sky Box Rendering

The final main feature of the TIG application is the procedural generation and rendering of the 
skybox texture. The skybox texture is loaded into the application as a six-sided cubemap. The 
cubemap uses the same single  tiling texture that  gets generated when the application is 
initialized.  The  skybox  generation  interface  (SkyBox.h),  is  used  to  generate  the  skybox 
texture. 

The generated skybox textures then get loaded into the application from ShaderApp.cpp:

const char *szCubeFaces[6] = { "../data/skyTex.bmp", 
"../data/skyTex.bmp", "../data/skyTex.bmp", "../data/skyTex.bmp", 
"../data/skyTex.bmp", "../data/skyTex.bmp" };
GLenum  cube[6] = {  GL_TEXTURE_CUBE_MAP_POSITIVE_X,
                     GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
                     GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
                     GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
                     GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
                     GL_TEXTURE_CUBE_MAP_NEGATIVE_Z };

glBindTexture(GL_TEXTURE_CUBE_MAP, cubeTexture);

    for(int i = 0; i < 6; i++)
    {       
       LoadBMPCubeTexture(szCubeFaces[i], cube[i]); 
    }

A custom GLSL shader is also used for the rendering of the skybox. The GLSL skybox vertex 
shader  transforms the  vertex  position  of  the  skybox based on  the skybox transformation 
pipeline model view projection matrix, while the fragment shader computes the colour of each 
of the fragments based on the texture data that is sampled from the cubemap. 

//Vertex shader
#version 130

in vec4 vVertex;
uniform mat4   mvpMatrix;  // Transformation matrix
varying vec3 vVaryingTexCoord;

void main(void) 
{
    vVaryingTexCoord = normalize(vVertex.xyz);
    gl_Position = mvpMatrix * vVertex;
}

//Fragment shader
#version 130

out vec4 vFragColor;
uniform samplerCube  cubeMap;
varying vec3 vVaryingTexCoord;

void main(void)
{ 
    vFragColor = texture(cubeMap, vVaryingTexCoord);
}



Camera Interface

A camera interface was  one of the main requirements for the development of the the TIG 
application. A camera object that would allow the user to navigate around the 3D scene had 
to be implemented. Also, the camera object would have to allow the user to walk on the 
terrain and move around the scene in an FPS (First Person Shooter) style.

The camera interface that was implemented makes use of math3d.h M3DMatrix44f interface, 
as well as the GLFrame interface (both are part of GLTools). The camera interface allows the  
user to fly around the scene using the keyboard arrow keys, to walk on the terrain using the 
WASD keys (this includes strafing) and to rotate the camera around the XYZ axis using the 
mouse. The initial camera interface had a problem however, as there is an issue with using 
the GLFrame interface for performing  matrix based rotations around the local camera axis. 
This is due to the fact that the GLFrame interface makes use of Euler angles to perform the  
rotations around the rotation axes. This in turn causes “Gimbal lock”.  Gimbal lock occurs 
when two rotation axes are rotated in parallel directions, making the third rotation axis slip. In  
the TIG application, this was happening as the user was rotating the camera along the X and 
Y axis, thus causing the Z axis to slip on either of of it's positive or negative sides. This in turn  
caused the camera to roll. 

The Gimbal lock issue was addressed by by performing the rotations along the X axis using 
the local rotation matrix, while performing rotations around the Y axis using world matrix. This 
way, there is no Gimbal lock, as the the X and Y rotations are never parallel within the same 
coordinates  set.  Future releases will  eliminate this completely by replacing the local Euler 
angle rotation routines with a Quaternion based rotation interface. This allows the camera to 
rotate independently along any of the three axes. 
The final feature of the camera interface is allowing the user to walk on the terrain (rather then 
just  being able to fly around it). This feature allows the user to get a better look at the scenery 
details.  The  way  FPS  walking  was  implemented  is  by  translating  the  local  camera  Y 
coordinate every frame to a pre-set Y value, that is calculated based in the current height the 
user is above at a given vertex point on the terrain mesh. Below is an example of how this  
function is implemented in the camera interface:

void Camera::FPSWalk(float maxHeight, float height)
{

float linear = 0.5f;
if((GetKeyState('W') & 0x80))
{

m_cameraFrame.MoveForward(linear);
m_cameraFrame.TranslateLocal(0.0f, maxHeight - GetY() + height, 

0.0f);
}
else if((GetKeyState('S') & 0x80))
{

m_cameraFrame.MoveForward(-linear);
m_cameraFrame.TranslateLocal(0.0f, maxHeight - GetY() + height, 

0.0f);
}
else if((GetKeyState('D') & 0x80))
{

m_cameraFrame.MoveRight(-linear);
m_cameraFrame.TranslateLocal(0.0f, maxHeight - GetY() + height, 

0.0f);
}
else if((GetKeyState('A') & 0x80))
{

m_cameraFrame.MoveRight(linear);
m_cameraFrame.TranslateLocal(0.0f, maxHeight - GetY() + height, 

0.0f);
}
GetMouseInput();

}



Application Features

Program Operation

Below is a UML diagram showing the operation of the TIG application:



BMP Texture Data Loading

In addition the loading functionality of the TIG application framework being able to load TGA 
texture  files,  two  additional  functions  were  added  to  the  texture  loading  interface 
(texloader.cpp) to allow the loading of 24bit BMP files, which is the primary texture format 
used for all texture data in the application:

bool LoadBMPTexture(const char *szFileName,  GLenum  minFilter,  GLenum 
magFilter, GLenum wrapMode)
{

GLbyte *pBits;
int nWidth, nHeight;

pBits = gltReadBMPBits(szFileName, &nWidth, &nHeight);
if(pBits == NULL) 

return false;

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapMode);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapMode);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, nWidth, nHeight, 0,
 GL_BGR, GL_UNSIGNED_BYTE, pBits);

    free(pBits);
    if(minFilter == GL_LINEAR_MIPMAP_LINEAR || 
       minFilter == GL_LINEAR_MIPMAP_NEAREST ||
       minFilter == GL_NEAREST_MIPMAP_LINEAR ||
       minFilter == GL_NEAREST_MIPMAP_NEAREST)
        glGenerateMipmap(GL_TEXTURE_2D);
            

return true;
}

bool LoadBMPCubeTexture(const char *szFileName, GLenum  cube)
{

GLbyte *pBits;
int nWidth, nHeight;

pBits = gltReadBMPBits(szFileName, &nWidth, &nHeight);
if(pBits == NULL) 

return false;

glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, 
GL_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, 
GL_LINEAR_MIPMAP_LINEAR);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, 
GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, 
GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, 
GL_CLAMP_TO_EDGE);    

    glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexImage2D(cube, 0, GL_RGB, nWidth, nHeight, 0,
 GL_BGR, GL_UNSIGNED_BYTE, pBits);

    free(pBits);

glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
            

return true;
}



Critical Analysis 

The creation of the TIG application was a learning experience with a fairly steep curve. Thus, 
this code that was developed is not optimized for performance and there are a lot of things 
that could have been, and could still be, done better and in a more efficient manner.

LibNoise  is  not  ideally  optimized  for  real  time  3D application  usage,  but  is  sufficient  for 
demonstrative purposes. Therefore, the procedural generation of each island at run time can 
take up to 30 seconds (20 seconds on the computer the application was developed on, using 
a 2.5GHz Intel Core 2 Quad CPU). This is one of the things to be addressed and potentially 
optimized in the future releases of the application (or other applications that follow the same 
principals as TIG).

The rendering of mesh data is not very efficient either, since the use of VBO's and geometry 
shaders was omitted due to  time constraints. As a result, 100% of the procedural generation  
computations  are  done  on  CPU,  rather  then  on  the  GPU.  This  includes  the  procedural 
generation of textures and mesh data (with the exception of the water mesh animation which  
is done via the vertex shader on the GPU). For the future releases of the application, all of the 
procedural data generation should be moved to the GPU for more efficient computation.

The use of multitexturing was also omitted, mainly because it would take much longer for the 
application  to  generate  the  additional  textures.  Also  there  was  not  really  any  need  for  
multitexturing, as the single generated terrain texture is of fairly good visual quality and has 
pre-computed gradient colour data, based on terrain elevation, already rendered to it.  

Conclusion

The development of the TIG application proved to be a rewarding learning experience. The 
exposure to procedural generation algorithms allowed for the investigation, development and 
testing of various methods used in many of the cutting edge 3D rendering applications found 
in today's games, interactive applications, film and other visual media. 

The exposure the OpenGL 3.3 also proved to be a worthwhile experience, as in comparison  
to OpenGL 2.0 and 1.2, it's almost a completely different graphics API. The use of OpenGL 
3.3 has opened the doors for the use of OpenGL ES 2.0 for future personal 3D graphics 
research and programming. 
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