
OpenGL Graphics Programming - Second Semester Coursework Report

By Vladeta Stojanovic (0602920@live.abertay.ac.uk)

mailto:(0602920@live.abertay.ac.uk


Abstract Overview

This report focuses on the main features implemented for the OpenGL coursework application developed 
during the second semester.

The main features this report focuses on are:

– OpenGL/Win32 API interfacing
– Overview of the OpenGL fixed function rendering pipeline
– Basics of 3D projection projection
– Implementation of the Vector3 vector arithmetic and operations class
– Implementation of the Camera class used for user controlled scene navigation
– Implementation of  the Terrain  rendering class,  including methods for constructing the 3D terrain 

mesh
– Overview and implementation of the MWE (Mean Weighed Equally) algorithm used for calculating 

surface normals used in real time hardware accelerated lighting of the 3D terrain mesh surface
– Implementation of skybox rendering

Portions of the program code were written and based on code provided by:

Matthew Bett -  Win32 API base code, TGA texture loading code, MS3D model loading code
Jeromy Walsh – MWE code based on code provided for the GameDev.net article (see references)
Ben Humphrey – Vector3 class and Camera class code based on code examples provided on  website 
(www.gametutorials.com) (see references)
Trent Pollack – Terrain class and .RAW file loading code based example code (see references)

Additional credit goes to Grant Clarke for help with implementing the MWE algorithm. 

http://www.gametutorials.com/


Coursework Overview

The requirement for the second semester graphics programming module coursework was to create a fully  
interactive 3D scene using OpenGL. A special emphasis was also placed on object orientated code design 
and implementation. 

The coursework that was created for this module features an interactive OpenGL scene. In this scene the 
user can fly around a virtual landscape and examine the 3D rendered terrain. The user is able to see the fully  
rendered (but static) 3D models that are rendered along with the terrain. The scene also features a skybox  
and a cheaply imitated water body that is semi transparent and makes use of a spherically mapped texture. 
Finally, the scene also features standard linear fog.

The coursework program needed to make use of the Win32 API, along with OpenGL. OpenGL is used as 
part of the hardware rendering context (HRC) layer that is responsible for providing the hardware accelerated 
rendering to the hardware device context of the users application window handle. This allows OpenGL to  
interact with the current display device via the provided hardware driver (interfacing with the GDI module of  
the Win32 API, allowing the current users window to display OpenGL accelerated 3D graphics). 

Below is a simple illustration of this concept:

Fig 1: Win32/OpenGL Interfacing

As mentioned previously, emphasis was placed on object orientated code design and implementation. The 
coursework  project  features  a  modular  approach  to  this  by  separating  all  of  the  main  OpenGL related  
functionality components into classes (e.g. Terrain Class, Camera Class, Vector3 Class), along with standard 
procedurally programmed  modules (e.g. the Milkshape 3D model loading code). 

Together, all of the coursework application modules of the feature implementations work together in harmony 
to demonstrate a simple 3D scene in OpenGL using the  Win32 API. 



Implementation Overview

As mentioned above, the requirement for this coursework was to create a fully interactive 3D scene using  
OpenGL and Win32 API’s.  This section discusses the implementation of various 3D graphics features that  
the coursework demonstrates.

The main emphasis of the coursework was to create a scene that would very likely be found in some sort of 
computer game or 3D simulation. A very typical type of 3D scene that is often featured in various 3D games 
and simulations is that of an outdoor area, usually presented in the form of naturally occurring hills and  
mountains, rivers and trees (although these are very vague examples of the beauty that nature really holds).

It was decided that the main emphasis of the coursework would then be real time 3D terrain rendering. 3D 
terrain rendering is used widely in outdoor games such as flight simulators, real time strategy games, and 
more  importantly:  real  time  simulation  of  flood  control,  various  geographical  information  system  (GIS) 
analysis and presentations, as well as various military simulations.  It can then be stated form this that the  
visual presentation of a 3D terrain in real time certainly holds it’s weight in terms of advantages it can offer in  
the simulation of various scenarios. 

Generally, a 3D terrain mesh is either generated procedurally or automatically (usually from offline data that 
is fetched from a source outside of the application, such as a user created height map image or a satellite 
photo). Terrain that is generated procedurally makes use of various algorithms to achieve realistic noise 
synthesis and slope generation that is found to be naturally occurring in real  terrains. These algorithms 
include various fractal pattern generation algorithms and the Perlin noise algorithm. 

The other way of generating terrains, as mentioned above, is from an already defined geometric value form,  
such a 2D image containing the height map values that are needed for the generation of the 3D terrain  
mesh. The coursework application makes exclusive use of this approach, mainly for simplicity, by making 
use of an 8-bit grayscale image to create a 3D terrain mesh based on the gradient values of each pixel in the  
image (this is described in more detail later on in the report).  

Apart  from generating 3D terrain meshes, there needs to be a viable way of  displaying them. A simple 
wireframe  representation  would  suffice  for  the  simplest  simulations,  but  for  more  complex  scenarios, 
especially those where a realistic representation of the 3D terrain to the user would be beneficial, a more  
sophisticated display method needs to be implemented.  

In these scenarios, a 3D terrain would normally be rendered either textured, smooth shaded or in some way 
that displays the vertex and face lighting values, along with relative colour values, of the varying colour 
gradients  present  in  the  mesh  slopes  of  the  3D terrain  mesh.  One  of  the  main  aims  of  the  OpenGL 
coursework application was to create 3D mesh terrain that would make use of hardware acceleration vertex  
and face normal computations to calculate the lighting gradients effecting each triangle face of the terrain  
mesh. This method of shading would produce desirable looking results, creating a smooth appearance in the 
change of lighting values between neighbouring triangle faces of the 3D terrain mesh. 
 
A good algorithm that was chosen to achieve this smooth shading of the terrain surface (although smooth  
shading  is  a  vague  term  used  to  describe  many  different  shading  algorithms  that  perform  continuous 
interpolation of lighting colour value gradients between related polygon faces of a given 3D mesh), is the 
Mean Weighted Equally (MWE) algorithm, often referred to as Gouraud Shading. 

The MWE algorithm work by calculating the normal of each face of the triangle strip that makes up the 3D 
terrain  mesh,  and  the  by taking each  of  the faces  that  share  a  common vertex point,  it  calculates  an  
averaged surface normal. The averaged surface normals are then used to represent the normal vector of any 
given triangle of the 3D terrain mesh that shares a common vertex between it‘s neighbouring triangles. 



Once a 3D mesh of a terrain is constructed, shaded, textured and lit, again, in most scenarios, the terrain  
acts only as a backdrop. Most of the time, things like water bodies, vegetation, roads, buildings, swamps, 
tree lines and various other geographical features need to be present along with the terrain in a given real  
time 3D scenario. The OpenGL framework demonstrates this by making use of the Milkshape 3D model  
loading code (provided by Matthew Bett), to load, position and render models of trees and buildings on the 
terrain.  A water body is also rendered within the vicinity of the 3D terrain mesh. This water body consists of a 
single quad that is semi transparent and has a spherically mapped texture projected onto it’s surface, giving  
a very basic (and perhaps crude) illusion of reflection (which is one of the most widely simulated properties of 
water bodies in computer graphics). 

A final feature is the inclusion of liner fog, that can be turned on or off by user. The linear fog can add a  
sense of depth to the perspective of the scene. Fog can also be used to dynamically occlude parts of the 
scene, especially if the drawing distance in the rendered scene is very limited. This allows the simulated fog 
to act not only as an aesthetic to a 3D scene, but also as a potential optimization. 

All  of  these features put  together  allow the coursework application to  demonstrate  greater  potential  for  
various scenario computation and analysis.  

Fig 2: Screenshots of the application running demonstrating the various mentioned features



Implementation Details

This section describes the specific details of the various implementation methodologies used to construct the 
OpenGL coursework application.

Win32/OpenGL Interfacing 

In terms of 3D graphics acceleration under Windows, OpenGL is used as a low level layer between the 
hardware rendering context of the application window handle and the users display driver. This allows any 
programmer to use OpenGL in various development environments under the Windows operating system, 
since the generic OpenGL implementation that is provided with Windows allows the programmers to use 
both software and hardware rendering. 

The default OpenGL specification implementation that is provided for use with Windows is the OpenGL 1.1 
specification. This specification is deprecated and no longer used by any currently developed commercial 
applications (unless support for OpenGL 1.1 is implemented separately as a fall back option for computers 
that don’t support higher versions). 

However,  OpenGL 1.1 still  has valid uses for educational use and training,  as it  allows novice graphics  
programmers to experiment with the basic fixed function pipeline features of 3D rendering (more on this in 
the sections below).

The coursework application makes exclusive use OpenGL 1.1 along with the Win32 API. Below is an high 
level overview of the implemented interface for OpenGL using Win32.

Fig 3: Flowchart diagram of the application main loop and Win32/OpenGL interfacing. 
     Note: The collision checking stage is omitted from the final version application.

There are a few stages of setup code that require implementation before a Windows application can actually 
make use OpenGL to render to the application window frame buffer. The basics of setting up an application 
window wont be discussed here. Instead, descriptions for each of the critical OpenGL setup stages of the 
windowing code implementation are discussed below in detail.



The three most important functions that are used in coursework application to set up OpenGL are:

bool SetPixelFormat(HDC hdc);
void ResizeGLWindow(int width, int height);
void InitializeOpenGL(int width, int height);

StetupPixelFormat()

Every  application  running  under  windows  must  request  a  device  context  identifier.  This  identifier  tells 
windows what sort of display device to use when displaying the contents of the given application window.

Most native applications using Win32 will make use of the default device context associated with the current 
desktop device context. GDI applications that are running in windowed mode will always make use of the  
current desktop colour depth.

However, when using OpenGL to perform 3D rendering to an application window, the current application 
window must be setup to accommodate the requirements of the hardware rendering context layer associated 
with the application window.

These setup options include setting the colour depth, colour mode, double buffering, software or hardware 
rendering support and the drawing destination to where OpenGL can display it’s rendered contents of the 
frame buffer.  These are only the most basic setup options needed for a generic OpenGL fixed function 
pipeline application.

The code example below highlights the selected pixel format for the OpenGL coursework application.

PIXELFORMATDESCRIPTOR pfd = {0}; 
int pixelformat; 
 
pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);     
pfd.nVersion = 1;     
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; 
pfd.dwLayerMask = PFD_MAIN_PLANE;     
pfd.iPixelType = PFD_TYPE_RGBA;     pfd.cColorBits  = 
COLOUR_DEPTH;     pfd.cDepthBits = COLOUR_DEPTH;

    pfd.cAccumBits = 0;  
pfd.cStencilBits = 0;

The code above sets up the application window to allow OpenGL to draw to that window frame buffer. The  
pixel format setup code also allows the application window to make use of double buffering for displaying the 
contents to the frame buffer.
The colour depth and colour mode is also setup to 32 bit colour, using 8 bits for each the four RGBA colour  
channels. The application does not make use of the accumulation buffer or the stencil buffer.

Once the pixel format for the application window is setup, the function will return a true Boolean value up a 
successful setup (otherwise an error message(s) is returned).



ResizeGLWindow()

The coursework application window may need to be resized at certain times while the application is running. 
Resizing the application window means that the current frame buffer will need to be displayed within a new 
rectangular window area. Often, stretching the viewport can distort the currently rendered contents of the 
frame buffer, making them appear stretched out. 

The main technique used to resolve this issue is to implement a simple viewing transformation routine. 
OpenGL does this automatically, resetting the current projection matrix by using an identity matrix function, 
glLoadIdentity(), to reset the current display matrix every time the window is resized. This allows the current  
image in  the frame buffer  (whose coordinates are stored in  within  the world  coordinate  system),  to  be 
properly mapped onto the new window rendering area (which uses the current device coordinate system).

void ResizeGLWindow(int width, int height)
{

if (height==0)
{

height=1;
}

glViewport(0,0,width,height);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(45.0f, width/height, 1.0f, 500.0f);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

The ResizeGLWindow() functions takes in integer value parameters of the window with and height. These 
parameters  are  used  to  properly  set  the  size  of  the  size  of  rendered  image  in  the  frame buffer.  The  
glViewport() function is used to specify the transformation matrix from the normalized world coordinates to 
the application window coordinates. The first two values of the glViewport() function are used to specify the 
lower left corner of the viewport rectangle, and the width and height values are used to specify the width and 
height of the viewport that the normalized world coordinates get projected onto. 

It is very important to note the order of matrix transformations in OpenGL. Since OpenGL uses a state driven 
mechanism to store the current enumerated rendering states, every function call is placed on a virtual stack 
(either being a projection matrix stack, a modelview matrix stack or a texture matrix stack). So when the 
function ResizeGLWindow() is called, the OpenGL state machine calls the matrix operations using a first in  
last out mechanism.  

Therefore,  the  first  function  to  be  called  by the  OpenGL state  machine  is  glLoadIdentity(),  followed by 
glMatrixMode(GL_MODELVIEW), followed by gluPerspective(), and then only does the glLoadIdentity matrix 
function get executed again before the glMatrixMode() and glViewport() function are called.  This makes a lot  
of sense, since the order of matrix operations in OpenGL make use post multiplication (each element being a 
matrix):



Perspective Projection

OpenGL allows programmers to automatically access affine matrix transformation functions.  This in turn 
hides the underlying principals of the mathematics used to define the viewport projection matrices that are 
automatically calculated by OpenGL, making such computations easily applicable. However, it is important to 
describe  the  basic  underlying  mathematical  principals  of  3D  viewport  transformation  and  perspective 
projection.

The main aim of the OpenGL projection matrix is to transform the current view of the 3D scene into a 2D 
image that can be rendered onto the users application window. 

A common  method  used  in  3D computer  graphics  to  transform  a  viewpoint  onto  a  given  plane  using 
perspective projection, is to use a given point in 3D space as the viewing centre. The coordinates defined by  
this viewing point are then projected onto the given plane using perspective projection. 

Calculating the projection is done in simplified terms by performing a ray cast vector intersection test with the 
viewing frustum, to determine where in the frustum the point lies (between the near and far frustum planes).  
The new coordinate points are then transformed back to origin, before being mapped on to the viewing plane 
(defined by coordinates (l t n), (r t n), (l b n) and (r b n)) . 

Below is an illustration of the OpenGL viewing frustum:

Fig 4: The OpenGL perspective rendering viewing frustum



The viewing centre is defined as a point in 3D space:

And the coordinates of the point to be transformed  are defined as:

Since the coursework makes use of perspective projection to define the viewing frustum (pictured below), it  
is necessary to calculate the projection of a given point in 3D space onto a viewing place defined by the 
following parameters:

Where the translation of coordinates between the viewing point and the transformation point defines the 
plane as :

Therefore the perspective projection matrix for the given viewpoint onto a given viewing plane can be defined  
as (proof not provided):

One last final note to mention about perspective projection goes back to the ray cast from the given centre 
view point into the frustum, to determine if there is intersection between the point to be projected, and the 
near viewing plane. 



This is determined calculating the distance between the centre viewpoint and the viewing plane, and the  
point to be projected and the viewing plane. E.g.:

Where it needs to be determined if Dc and Dp are of different signs. If Dc and Dp are of different signs, then 
calculation of perspective projection is possible. 

Perspective Transformation from a point in the 3D frustum to the Normalized Device Context (NDC)

Once a perspective projection for a given point in 3D space is calculated and transformed back to the origin  
(the viewing plane), it needs to be transformed onto the Normalized Device Context (NDC). 

What this means is that if the given point is transformed within the viewing frustum, it will be projected onto  
the viewing plane. Once it is projected onto the viewing frame, it needs to projected within the NDC frustum. 
What makes the NDC frustum special is that it is of unit length for all negative and positive x y z coordinates 
(essentially a unit length cube). 

The point is then orthographically projected parallel to the z-axis, giving all the new point coordinates the 
same value of unit length. The z coordinate value can be discarded, and what the calculation produces is a  
2D image coordinate for the orthographically projected point. These new 2D x and y point coordinates can  
then be used to map the rendered point  from the frame buffer onto the users hardware device context  
window handle. 

The NDC frustum is defined by transforming the perspective viewing frustum  between the near and far 
clipping  planes,  into  cube.  The  perspective  frustum is  made  up  of  two  z  depth  planes,  far  and  near.  
Transforming  the  viewing  frustum  into  the  NDC  frustum  is  accomplished  by  using  the  following 
transformation matrix:

 

The frustum between z = -n and z = -f is transformed into the NDC frustum.



The final matrix transformation that might be applied to the point projected onto the viewport, concerns the  
origin and the aspect ratio of the viewport. If the origin and the aspect ration of the viewport is different to that  
of the NDC frustum plane front plane (given coordinate values between 0 to 1), a further transformation 
matrix must be applied to the projected point in order to map it properly onto the users viewport.

The matrix responsible for this task is defined as:

H and W represent the users window width and height, ZR being the z-buffer range and X_0  and Y_0 being 
the new coordinates of the frame origin. 

One last note to mention is that the NDC frustum matrix transformation is defined differently in OpenGL. This 
is because OpenGL uses column major matrices (making the OpenGL implementation of the NDC frustum 
matrix transposed), defined as:



InitializeOpenGL()

void InitializeOpenGL(int width, int height) 
{  
    ghdc = GetDC(ghwnd);

    if (!SetPixelFormat(ghdc))
        PostQuitMessage (0);

    ghrc = wglCreateContext(ghdc);
    wglMakeCurrent(ghdc, ghrc);

    ResizeGLWindow(width, height);

 g_Camera.PositionCamera(0, 40.0f, 400.0f,   0, 0, -1.0f,   0, 1, 0);
}

The final function that is featured in the OpenGL setup code is the InitializeOpenGL() function. The function 
does a 5 things: 

1: The function assigns the current hardware rendering context handle to the application window handle,  
thus giving OpenGL access to the applications window:

ghdc = GetDC(ghwnd);

This function gives the OpenGL hardware device context access to the window handle.

2: The function calls the SetPixelFormat function, which sets up the display attributes associated with the  
graphics hardware device context:

if (!SetPixelFormat(ghdc))
    PostQuitMessage (0);

If  the pixel  format is not  support,  the application will  post  a quit  message callback to the main window 
procedure. 

    ghrc = wglCreateContext(ghdc);
    wglMakeCurrent(ghdc, ghrc);

3: The next two lines of code specify the current rendering window for the application. This is referred to as  
the rendering context for the window. 

ResizeGLWindow(width, height);

4. Then the window resizing function is called. The application window will be given a default size of 800x600 
pixels.

 g_Camera.PositionCamera(0, 40.0f, 400.0f,   0, 0, -1.0f,   0, 1, 0);

5.  Finally,  the  users  cameras  is  given  a  default  starting  position.  More  details  about  the  camera 
implementation will be covered in depth in later section of this report.



Fixed Function Pipeline Overview

The OpenGL rendering pipeline is used to describe a number of stages that are involved in the process of 
rendering an image to the users application window. This involves the initial stages from the actual OpenGL 
API calls, to the rasterization of vertex and fragment data, to copying the image to the frame buffer, which is 
then used to display the final rendered image (or frame in most cases).

A very high level view of the standard fixed function OpenGL rendering pipeline can be described in the five 
basic stages (well four actually, since OpenGL API function calls are not really part of any of the processing  
stages), illustrated below:

Fig 5: A high level version of the standard fixed function OpenGL pipeline.

The first stage consists of fetching all the function calls from the OpenGL API and storing the function calls in 
the OpenGL command buffer. The function calls either deal with vertex or fragment data. 

Most of the time, vertex data needs to have transformation and lighting calculations applied every frame, but  
in some cases, where transformations and lighting calculations are not needed, this stage can be omitted. 

Next  the vertex and fragment  data gets  assembled at  the rasterization stage. This  stage of  processing  
involves constructing the actual frame that will be rendered, which is constructed from the vertex, fragment  
and texture data that is fed to the rasterizer.

The rendered frame is then placed in the frame buffer, from where it is displayed to the users application  
window,  via  the  hardware  rendering  device  context  that  is  setup  for  that  particular  window.  All  of  this 
describes the most basic stages of using the standard fixed function OpenGL rendering pipeline. 
However, there are many more stages involved in the process. These stages will now be briefly discussed.

The OpenGL fixed function pipeline became virtually deprecated when OpenGL 2.0 was released in 2004, 
with standardized added support for writing assembly level shader code, as well as the initial introduction of  
GLSL (OpenGL Shader Language). This transformed the current graphics pipeline on graphics cards that 
supported OpenGL 2.0  from fixed function to a fully programmable graphics pipeline. It is unfortunately 
beyond the scope of this report to focus on the programmable graphics pipeline and shaders. The next  
OpenGL coursework application will inevitably make use of GLSL shaders, so the theory and implementation  
details of using shaders will addressed and explained at that time. 



Going back to the fixed function pipeline, below is a detailed diagram of all the stages of processing that are 
found in the fixed pipeline:

Fig 6: A more detailed overview of the OpenGL fixed function rendering pipeline.

An good and important side note to mention is that at the present time, almost all personal computers have 
GPU’s with a programmable pipeline,  therefore the fixed function pipeline is  actually emulated by all  of 
today’s modern graphics cards that implement the OpenGL 2.0 specification (and above, going up to 4.0 at 
the time of writing this report). 

The initial stages of the OpenGL fixed function pipeline deal with vertex data. Once the operations that need 
to be performed on the vertex data are computed, the current geometric primitive (e.g. a triangle strip or a 
quad), is rasterized and converted to fragment data (aka pixel data). The fragment data then undergoes 
further processing through the requested fragment processing stages,  before being written to the frame 
buffer and displayed to the users window via the hardware rendering device context handle.

The processing stages in the fixed function pipeline can be separated into per-vertex processing stages and 
per-fragment processing stages.



Now to briefly explain each stage:

Note: For simplicity, it will be assumed that a single primitive object is being rendered. 

Per-vertex processing stage (Primitive Processing)

This is initial stage of the per-vertex processing. It is at this stage that the attributes of the vertex based data  
in the current scene is passed in. The vertex data is usually made up of indexed vertex array data, which 
includes information such as the position,  normal vector,  colour and texture coordinates of  the primitive  
object. 

Transformation

At this stage the vertex position of the primitive object is transformed for the world coordinate space to the  
application viewport space. This is where the use of the viewing transformation comes in. 
It is also at this stage that the normal vectors for the primitive are transformed (assuming the primitive has a 
normal vector assigned to it). The normal vector is multiplied by the inverse transpose of the model view 
matrix (world coordinate matrix). The normal vector is usually normalized, since a unit length normal vector is 
required to perform lighting calculations. The normal vector may also be rescaled at this stage. 

Lighting

The lighting computation  stage of  the pipeline takes in  the primitive  vertices  colour,  normal  vector  and 
position. It computes and outputs two colour values, one primary and one secondary, and checks whether 
the back faces of the primitive need to be lit as well. 

In the fixed function pipeline, the a single hard coded lighting equation for the surface shading of the primitive  
is used by default (usually defined GL_SMOOTH).  More details about smooth shading will be given later. 

This stage also takes into account the number of lights present in the scene (eight lights being the maximum 
number of lights allowed), along with any additional material information about the primitive (e.g. diffuse, 
ambient and specular colour values),  when computing the lighting equation for the surface shading of the  
primitive. 

Texture coordinate generation and transformation

Assuming that the primitive has texture coordinates assigned to it, this where they get processed. Texture  
coordinates can either by specified manually or automatically generated by OpenGL. The computation at this 
stage involves transforming every texture coordinate by the texture matrix, in order to project the texture 
coordinates of the primitive onto the texture map in video memory. Common texture mapping projections  
include planar (almost always user specified, usually by a UV map), spherical  and cylindrical mapping (more 
on this later). 

Clipping

This is where clipping occurs. Any primitive that is projected onto the viewport space is projected within the 
viewing frustum set up by the application. Clipping determines which regions of the primitive will be displayed  
and which will not. Newly generated vertices of the area of the primitive where clipping occurs are assigned 
new vertex attributes (which are updated every frame). 

Per-fragment processing stage (Rasterization)

This stage of processing takes in the interpolated fragment values of the primitive , which include texture 
coordinates and colour coordinates (provided by the lighting and material value computed surface shading 
interpolation, from the previous lighting stage). The result of the computed data that is processed and passed 
out of this stage is a single colour value corresponding to the computed fragment. 



Texturing

This stage takes in the interpolated fragment texture coordinate value as well as the passed in colour value 
from the previous stage.  The output  is  a  new colour  based  on the result  of  the texture lookup  that  is  
associated with the active texture unit (that being either a 2D texture or something like a cube map texture). 

The process computes and outputs a new fragment colour value that is based on the result of the texture 
lookup (which either blends or replaces the current fragment colour value). The new fragment colour value is  
then passed on. 

Colour sum calculations

Assuming this stage is enabled, the passed in fragment colour value, along with a passed in secondary 
colour value (from the lighting calculation), get their RGB colour channels added together and clamped to a 
floating point value from 0 to 1. The new colour value of the current fragment is passed onto the next stage. 

Fog calculations

Assuming fog is enabled, the passed on colour fragment value is interpolated with the fog colour using one 
of  the three hard coded fog factor equations (linear,  exponential   or second-order exponential).  The fog 
equations use the fog coordinate value that is either interpolated along with the subsequent fragment values  
at the rasterization stage, or is passed in along with the vertex attributes at the primitive processing stage.  
The coursework application makes use of linear fog (more on this later on). 

Antialiasing

Again,  assuming  antialiasing  is  enabled,  this  stage  computes  the  smooth  edges  of  the  primitive  by 
multiplying the alpha value of currently processed fragment with what is known as a coverage value. The  
coursework application does not make use of antialiasing.

Per-fragment calculations

At this stage all of the final fragment computations get carried out. These include any enabled per-fragment  
tests in the order of scissor testing, alpha testing, stencil testing, depth testing, blending and dithering. It is  
beyond the scope of this report to describe in detail what each of these tests do, but it is important to note  
that this stage determined whether or not the current fragment should be written to the frame buffer. 

These test are mostly used when dealing with things like transparent sprites rendered over quads (e.g.  
billboarding), or when rendering particle effects.

Write to frame buffer

Once the fragment has successfully passed thru all the per-fragment processing stages, it gets written to the 
frame buffer. The frame buffer is used to hold frame data that is displayed on the users application window.

It should be noted that the coursework application makes exclusive use of double buffering.
This will be discussed in more detail in later sections of this report.



Using object orientated programming techniques

As mentioned previously, one of the main requirements for this semesters OpenGL coursework was that the 
application  that  needed  to  be  developed  need  to  make  use  of  object  orientated  design  and  code 
implementations.

It was decided early on that designing and implementing three different classes would be beneficial to the 
project, as it would allow for a modular approach to adding and testing new features, as well as cleanly  
structuring the layout of the code.

Below are details about the design and implementation of the three main classes used in the coursework 
application: the Vector3, Camera and Terrain classes. 

Vector3 Class

Fig 7: The Vector3 class

Below is a basic description of each of the member functions of the Vector3 class, as well the associated 
data members of the class.

Vector3::Vector3 Constructor()

The Vector3 class constructor can take in three different parameter values. All three are GLfloat type floating 
point numbers, representing the x, y and z directional components of the instantiated Vector3 class object.



Overloaded operators:

Vector3 operator+(Vector3 vVector)
{
  return Vector3(vVector.x + x, vVector.y + y, vVector.z + z);
}

Vector3 operator-(Vector3 vVector)
{

return Vector3(x - vVector.x, y - vVector.y, z - 
vVector.z);
}

Vector3 operator*(GLfloat num)
{

return Vector3(x * num, y * num, z * num);
}

Vector3 operator/(GLfloat num)
{

return Vector3(x / num, y / num, z / num);
}

The featured operators have been overloaded to accommodate the needs of computing vector arithmetic.

Vector3 Vector3::Cross()

A common use for vector cross products in 3D computer graphics is to find a new vector that is orthogonal 
(.e.g. perpendicular) to the two vectors from which it gets derived from.

If there are two vectors , v1 and v2, the cross product between those two vectors (which will be called u), is 
calculated by using the formula:

Where sin θ is the angle between the vectors v1 and v2, and where the vector lengths of v1 and v2 are used 
to calculate the component values of the cross product vector u. 

It should be noted that if the vectors v1 and v2 are parallel, then sin θ = 0, which produces a zero vector. 
Also, if sin θ = 1, then the cross product will be a unit vector (assuming in that case that vectors v1 and v2 
are of unit length). Since the cross product is used to compute the perpendicular between the two vectors v1 
and v2, sin θ will always be equal to 1 (90°). 

The calculating the cross product is defined as:



The most common use of the vector cross product is using the cross product to generate a perpendicular  
vector product between tow given vectors. A good example would be a unit vector generated between three 
points (vertices) that make up a face of a triangle. This unit vector is referred to as the normal vector.

Depending on the construction of the triangle face (using either clockwise or anti-clockwise vertex welding), 
the generated normal vector can either be pointing outwards (v2 x v1) or inwards (v1 x v2). Normal vectors of 
a triangle face that point inwards are usually used to represent the backface of a triangle. In most cases, due 
to optimization, backfaces of triangles are not rendered (this is referred to as backface culling). 

Below is a simple diagram used to illustrate the concept of normal vectors of a triangle face:

Fig 8: A normal vector of a triangle face.

Finally, the vector cross product calculation can be implemented in the Vector3 class. 

Vector3 Vector3::Cross(Vector3 vVector1, Vector3 vVector2)
{

Vector3 vNormal;

vNormal.x = ((vVector1.y * vVector2.z) - (vVector1.z * vVector2.y));

vNormal.y = ((vVector1.z * vVector2.x) - (vVector1.x * vVector2.z));

vNormal.z = ((vVector1.x * vVector2.y) - (vVector1.y * vVector2.x));

return vNormal;
}

The Cross() function of the Vector3 class computes the cross product between two vectors, and returns the 
computed normal vector as a new Vector3 object instance. 



GLfloat Vector3::Magnitude()

In 3D space the magnitude (aka length) of a given vector is based on 3D Euclidean distance equation, which  
essentially measures the distance between two different points in 3D space. 

Fig 9: Vector length formula and diagram

In the case of the Vector3 object, that would be starting and the ending points.

GLfloat Vector3::Magnitude(Vector3 vNormal)
{

return (GLfloat)sqrt( (vNormal.x * vNormal.x) + 
    (vNormal.y * vNormal.y) + 
    (vNormal.z * vNormal.z) );

}

The Vector3::Magnitude() function takes in a Vector3 object as a normalized vector, and from it computes the 
magnitude (length) of the normal vector. The value is returned as GLfloat type floating point number.



Vectro3 Vector3::Normalize()

A normalized vector is often used to determine the direction of an entity that the vector is representing. In 
order to use a given vector as a direction vector, the vector used must be of unit length (1). Most of the time,  
calculating only the length of a given vector will not produce a unit vector, therefore the given vector must be  
normalized in order to be used a direction vector.

The following formula is used to normalize a given vector:

Applying the equation above to a given vector will result in the vector magnitude being given a value of 1.  
E.g. 

Below is the code implementation of the vector normalization routine in the Vector3 class. 

Vector3 Vector3::Normalize(Vector3 vVector)
{

GLfloat magnitude = Magnitude(vVector);
vVector = vVector / magnitude;

return vVector;
}

The  Normalize  function  returns  the  normalized  vector  from the  input  vector.  The  normalized  vector  is 
computed by dividing the input vector by it’s magnitude.



Camera Class

Fig 10: The camera class (note that camera collision was not implemented in the coursework)

The first main application of the Vector3 class is found in the camera class. The camera class is used to  
control the projected perspective rendering viewport. The camera class does not modify the viewport, but it  
does give the user the ability to fly around the 3D scene and examine it. The main functionality of the camera 
class is controlled via keyboard and mouse input.  

Camera control is based on the camera position, direction and the positive y vector (aka “up vector“). The 
current camera view is then computed by calling the gluLookAt() function, which takes in the three mentioned 
sets of data and converts them into a view model matrix that is added to the MODELVIEW matrix stack.

The three sets of data mentioned (again: camera position, direction and an up vector), are used to represent  
the 9  different  x  y  z  values for  each of  the three different  sets  of  data.  Now what  the camera control  
functionality of the camera class  actually does is that it modifies all those values per frame, based on the  
current user input associated with camera control. But what exactly does the user control? 

A simple representation of  a camera would be a projected viewport plane of the viewing frustum of the 
camera object:

Fig 11: Camera setup



Whatever is rendered within the viewing frustum (is not clipped), is projected onto the viewport plane (via  
MODELVIEW  projection  matrix  stack  concatenations),  that  gets  sent  to  the  frame  buffer.  So  a  simple 
description of the camera is that it  is an object,  a class containing a set of modifiers, which modify the 
projection  values  of  the  perspective  rendered  viewing frustum.  These  modifications  are  represented  as 
rotations between the positive and negative x y z axis, as well as the current camera position. 

Fig 12: An illustrated definition of the camera object in 3D world coordinate space

The  above  diagram  illustrates  the  camera  entity  in  3D  world  space.  The  position  of  the  camera  is 
represented by the three vectors: U, V, N, with the forth vector W being used  to represent the camera  
position in world coordinate space. The rotation of the camera is performed along the x y z axis (positive and 
negative), where such rotations are referred to as “yaw”, “pitch” and “roll” (or more traditionally as “azimuth“,  
“elevation“ and “roll“). 

While gluPerspective (which is used to setup the volume of the viewing frustum along with the aspect ratio of  
the viewport  projection matrix) is called only once when the application is setup, gluLookAt()  is used to 
modify all of the perspective orientation parameters every frame. However, in order to allow the user control  
of these parameters, new values must be updated every frame. The camera coordinate values are updates 
using user input (as mentioned above). 



Now it’s time to examine the camera class functionality in more detail.

The three main functions that provide the user with control over the camera object are:

RotateView()
StrafeCamera()
MoveCamera()

With keyboard and mouse input function being implemented using the functions:

SetViewByMouse()
CheckForMovement()

And the gluLookAt setup and update functions being implemented as:

Update()
Look()

Below are detailed descriptions of each the member functions.

MoveCamera()

void Camera::MoveCamera(GLfloat speed)
{

Vector3 vVector = m_vView - m_vPosition;

vVector = vVector.Normalize(vVector);

m_vPosition.x += vVector.x * speed;
m_vPosition.z += vVector.z * speed;  
m_vView.x += vVector.x * speed;
m_vView.z += vVector.z * speed;

}

The MoveCamera() function allows the user to move the camera along the N camera vector (defined as an  
equated increment in the users camera position and view vectors). The general way of computing movement  
for the camera is defined as:

Camera Vector Position += Camera Forward Vector * Camera Speed Constant

This  allows  the  user  to  move  the  camera  backwards  and  forwards.  As  the  camera  vector  position  is  
incremented (either by a positive of negative camera speed constant value, in which case it‘s decremented 
automatically), the camera’s view vector is also updated using the same mechanism, thus the user is able to 
view examine the scene by moving forward and backward.  

StrafeCamera()

void Camera::StrafeCamera(GLfloat speed)
{

m_vPosition.x += m_vStrafe.x * speed;
m_vPosition.z += m_vStrafe.z * speed;

m_vView.x += m_vStrafe.x * speed;
m_vView.z += m_vStrafe.z * speed;

}



The strafe camera function allows the user to move along the U camera vector, once again defined in the  
same manner as the implementation of the position and view vectors found in the  MoveCamera() function.  
Except this time, a new strafing vector is used instead of the default movement vector.

The equated incrimination along the U camera axis allows the user to move the camera left and right, thus 
giving the user greater control over the examination of the currently rendered scene. 

RotateView()

void Camera::RotateView
(GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
{

Vector3 vNewView;

Vector3 vView = m_vView - m_vPosition;

GLfloat cosTheta = (GLfloat)cos(angle);
GLfloat sinTheta = (GLfloat)sin(angle);

vNewView.x  = (cosTheta + (1 - cosTheta) * x * x) * vView.x;
vNewView.x += ((1 - cosTheta) * x * y - z * sinTheta)* vView.y;
vNewView.x += ((1 - cosTheta) * x * z + y * sinTheta)* vView.z;
vNewView.y  = ((1 - cosTheta) * x * y + z * sinTheta)* vView.x;
vNewView.y += (cosTheta + (1 - cosTheta) * y * y) * vView.y;
vNewView.y += ((1 - cosTheta) * y * z - x * sinTheta)* vView.z;
vNewView.z  = ((1 - cosTheta) * x * z - y * sinTheta)* vView.x;
vNewView.z += ((1 - cosTheta) * y * z + x * sinTheta)* vView.y;
vNewView.z += (cosTheta + (1 - cosTheta) * z * z) * vView.z;

m_vView = m_vPosition + vNewView;
}

Rotations in 3D space are usually defined using Euler angles. It is necessary to compute rotations in the x y 
z axis in order for the user to be able to orientate the camera in the 3D scene. Essentially, the RotateView()  
function is a high level implementation of 3D matrix transformations applied to the corresponding view and 
position vectors.

Rotation  in  the  x  y  z  axis  can  be  defined  by  3  separate  4x4  matrices,  making  use  of  homogenous 
coordinates:

Fig 13: The 4x4 homogenous matrix for rotation about the x axis



Fig 14: The 4x4 homogenous matrix for rotation about the y axis

Fig 15: The 4x4 homogenous matrix for rotation about the z axis

A very important note to mention (again) at this point is that OpenGL uses column major matrices, therefore 
when implementing any sort of 4x4 homogenous matrix transformation into OpenGL, it has to be transposed 
first. As it can be seen from the three different rotation matrices above, rotations along the x y z axis in 3D 
space  are  rather  straightforward  (in  same  comparison  to  performing  rotations  in  2D  space  using  3x3 
homogenous matrices).

However, in order to perform rotations by a given angle along any axis, make use of a normalized (unit) 
position  vector  (obtaining  the  position  vector  will  be  described  below),  that  is  multiplied  with  the  4x4 
homogenous coordinate rotation matrix for unit vector rotation about any given axis passing through the 
origin.

The position vector, can for now, be defined as :

Where alpha, beta and gamma represent the x y z values of the given unit vector. Therefore, the rotation 
about the axis given by the unit vector passing though the origin can be defined as:



The rotation matrix for unit vector rotation about any given axis passing through the origin, can be defined as 
(note that the proof is not provided):

The implementation of the 4x4 rotation matrix can be seen in the code excerpt provided.

SetViewByMouse()

The most important part of the SetViewByMouse() function is defined below:

if(currentRotX > 1.0f)
{

currentRotX = 1.0f;
}
else if(currentRotX < -1.0f)
{

currentRotX = -1.0f;
}
else
{

Vector3 vAxis = vAxis.Cross(m_vView - m_vPosition, m_vUpVector);
vAxis = vAxis.Normalize(vAxis);
RotateView(angleZ, vAxis.x, vAxis.y, vAxis.z);
RotateView(angleY, 0, 1, 0);

}

As mentioned above, concerning the 4x4 rotation matrix, the axis vector around which the rotation occurs 
must be of unit length. What the SetViewByMouse() function is that it computes the axis vector by finding the  
cross product between the difference of the current view and position vectors, and the current up vector. The  
value returned by the cross product is then assigned to the axis vector, before it gets normalized. 

At this point,  rotation along the Z (yaw) and Y (pitch) axis can occur (rotation around the X axis is not  
computed). Rotation in the x axis is clamped to a unit length of 1.0f or -1.0f (in radians). 



CheckForMovement()

This function simply checks if the user has pressed a certain key on the keyboard that corresponds to a  
particular event in the application. Such events include camera movement and strafing, as well as things like 
toggling wireframe and fog rendering. 

Truncated example below:

if(GetKeyState(VK_UP) & 0x80 || GetKeyState('W') & 0x80) 
{

MoveCamera(C_SPEED);
}
if(GetKeyState(VK_LEFT) & 0x80 || GetKeyState('A') & 0x80) 
{

StrafeCamera(-C_SPEED);
}
if(GetKeyState('Q') & 0x80)
{

m_vPosition.y += 0.1;
}
if(GetKeyState('V') & 0x80)
{

glPolygonMode(GL_FRONT, GL_LINE);
}
if(GetKeyState('F') & 0x80)
{

glEnable(GL_FOG);
}

Look()

void Camera::Look()
{

gluLookAt(m_vPosition.x, m_vPosition.y, m_vPosition.z,
  m_vView.x,  m_vView.y,     m_vView.z,

        m_vUpVector.x, m_vUpVector.y, m_vUpVector.z);
}

The camera class in it’s most basic essence is just an advanced functionality layer added on top of the 
gluLookAt()  function.  All  of  the  vector  calculation  values  associated  with  the  camera  class,  which  are 
generated every frame, are plugged into the gluLookAt() function, which in turn updates the viewing frustum 
every time the scene is drawn (per frame).

Update()

void Camera::Update()
{

Vector3 vCross = vCross.Cross(m_vView - m_vPosition, m_vUpVector);

m_vStrafe = m_vStrafe.Normalize(vCross);

SetViewByMouse();
CheckForMovement();

}

Finally, the camera update function is called every time before the scene gets drawn. The update function  
normalizes the strafing vector and then calls SetViewByMouse() and CheckForMovement().

Before the strafing vector is normalized, as in with the vector rotation, a unit vector is computed (note that the 
cross product is calculated, before being normalized, very time the camera is updated. This is the same 
routine used to update camera rotations every frame). 



Terrain Class

Fig 16: The Terrain class

The terrain class is made up of three main components. The first component is the HEIGHT_DATA struct  
used to store the data that is loaded in from a an 8-bit 256 grayscale colour RAW image file. The RAW image 
file is used to construct the terrain data.

Fig 17: The 256 grayscale image used as the heightmap

  The terrain  HEIGHT_DATA struct is defined below.

struct HEIGHT_DATA
{

unsigned char* m_Data;
int m_Size_;

};



The terrain size is set to a size of 256x256 pixels. In the implementation of the terrain rendering code in the  
OpenGL coursework application, the size of the terrain data is very important.

The reason for this is that each vertex of the triangle strip that makes up the terrain mesh is based on the  
gradient value calculated from the heightmap. The heightmap is stored as a one dimensional array. The one 
dimensional array is used to iterate thru and to index the vertex values of the z coordinate of the terrain  
mesh.

The value (aka height) of each of the vertices of the terrain mesh is calculated as follows:

int index = (z * m_Size) + x;

With this in mind, the terrain mesh is then constructed using the following mechanism:

glNewList(TERRAIN_LIST, GL_COMPILE);
{

glPushMatrix();

for(int z = 0; z <= m_Size; ++z)
{

glBegin(GL_TRIANGLES);
{

for(int x = 0; x <= m_Size; ++x)
{

int index = (z * m_Size) + x;

//for each set of neighbouring triangles
glVertex3f(x, m_heightData.m_Data[index] * 

m_heightScale, z);
}

}
glEnd();

}
glPopMatrix();

}
glEndList();

For efficiency purposes, the terrain rendering construction code makes use of OpenGL display lists. This 
prevents the program from having to compute the mesh vertex, normal (assigning the already precomputed 
terrain surface normal values) and texture coordinates on a per-frame basis. Rather, the display list is called 
once every frame, and the precomputed terrain mesh construction is poped off the display list stack. 

The  two  main  algorithm  implementations  found  in  the  terrain  class  are  the  ComputeNormals()  and 
ComputeVertexNormals() functions. These function implement the MWE algorithm in order to calculate the 
surface and vertex normals for each of the triangle faces, in order to make use hardware lighting on the 
terrain mesh. Described in the section below are detailed algorithm and implementation details of the MWE 
algorithm.



Hardware accelerated 3D terrain surface lighting

Traditionally, using graphics hardware and/or the CPU to compute lighting on complex meshes was a very  
costly operation in terms of  performance. It  wasn’t  until  the introduction of  graphics cards that  featured  
transformation and lighting capabilities that it became a viable solution to use hardware accelerated lighting 
for shading the surfaces of game geometry. 

Very detailed and large game geometry (detailed in terms of the number of triangles it features), was usually 
used sparsely, and when rendered, it was rendered with minimal overhead cost in terms of performance.  
This meant that features like multitexturing and dynamic LOD (level of detail generation), was employed, in 
order to save computing resources reserved for computing other game logic/rendering calculations.

However, today that is no longer the case, and making use of hardware accelerated lighting, even on the  
deprecated  OpenGL  FFP,  has  become  a  trivial  matter  (although  implementing  hardware  lighting 
computations for surface normals using the standard OpenGL FFP is rather tedious).

Implementing the MWE normal vector calculation algorithm

The computation of the MWE algorithm is broken up into tow different stages.

Stage 1: Computation of surface normals. 

The computation of the surface normal plane is calculated by finding the cross product between the two 
vectors A and B that lie in the plane. The result is a vector cross product that is then normalized.

Stage 2: Computation of the vertex normals 

Computing the surface normals then involves finding the sum of all the surface normals the given vertex is  
part of, and dividing it by 6. The range of the surface normals is from 1 to 5. The reason behind this is that for  
most constructed terrain meshes made up of triangles based on heightmap data, there will  always be 6 
vertices connected to one central vertex. This is due to the fact that the triangles are all facing the same 
direction, between the two sets that constructed in the terrain mesh construction loop. 



Below is an illustration to clarify this concept:

Fig 18: A set of four surface quad segments of the terrain mesh

Now it’s time to see how these two algorithms were implemented. The first algorithm to be implemented was 
the ComputeNormals()  algorithm, which was used to compute the surface normals of the terrain.

The most important computation by performed this function is the computation of the cross product between 
the two vectors A and B which lie in the plane of the given surface. The given surface is made up 2 faces, 
which each share two common vertex points. An example of a quad would be the combination of face C with  
vertices 1, 4 and 2, and face D, with vertices 2, 4, and 5. The cross product between the vectors of these two 
faces in computed and then normalized. This in turn computes the unit normal for every given surface quad 
in the terrain mesh. 

An example of the computation would be as follows:

It is assumed that a quad made up of two triangle is used.

Fig 19: A quad



Then, the iteration for each quad of the terrain mesh is computed as follows:

    



The code implementation for the above algorithm is as follows:

void DEFAULT_TERRAIN::ComputeNormals()
{

int normalIndex = 0;

for (int z = -1; z <= m_Size - 1; ++z)
{

for (int x = -1; x <= m_Size - 1; ++x)
{

// Set/Compute the normal for triangle 1
float height0 = GetHeightScale( x,    z );
float height1 = GetHeightScale( x,  z+1 );
float height2 = GetHeightScale( x+1,  z );

Vector3 normal1( height0 - height2, 1.0f, height0 -height1 );
// Set/Compute the normal for triangle 2
height0 = height2;
height2 = GetHeightScale( x+1, z+1 );

Vector3 normal2( height1 - height2, 1.0f, height0 - height2 );

normal1 = normal1.Normalize(normal1);
normal2 = normal2.Normalize(normal2);

// Set the surface normals in the array
m_TerrainNormals[normalIndex++] = normal1;
m_TerrainNormals[normalIndex++] = normal2;

}
}

}

There are slight adjustments in the implementation of the algorithm. The first adjustment is that the iteration  
takes place from I  and J values (set and z and x) from -1 to the size of the terrain mesh, instead of 0 to the  
size of the terrain mesh. The reason for this is that if the area of the height field computed is 1 unit larger  
then that of the original height field (this the one extra iteration), all of the quads, including the ones on the  
edge of the terrain mesh, will have their surface normals computed. This extra iteration is also necessary in  
order to compute the vertex normals for the quads. 

The second adjustment comes from calculating the top right triangle of the quads. Note that only the height 
points 0 and 2 are set. The reason for this is that because the triangles that make up the quad do not change 
their direction, the iterative value for P1 of each computed quad does not need to be adjusted. 



Once the surface normals are computed for each of the quads on the terrain  mesh, the result of the normals 
calculated used for the surface lighting looks like this:

Fig 20: Using GL_FLAT to display the surface normals (no surface vertex normals calculated)

Fig 21: Using GL_SMOOTH to display the surface normals (no surface vertex normals calculated)



As it can be seen from the above pictures, the terrain shading produced does not interpolate the vertex 
normals for the common vertex point of each of the quads in the terrain mesh. Even when using 
GL_SMOOTH, the result does not look very good. In order to fix this, the vertex normal for each of the quad 
surfaces must be computed, which will allow for the surface shading of the terrain mesh to be interpolated 
correctly. 

At this stage, computing the vertex normals involves implementing the algorithm for adding the 6 adjacent 
surface normals of the common vertex, and dividing them by 6. The important aspect of this algorithm is  
determining which given set of 6 surface faces is adjacent to the current triangle vertex, which is shared as a 
common vertex between those 6 neighbouring faces. The algorithm is called The Sliding Six Algorithm, and 
is defined as follows (based on the provided diagram):

Fig 22: Example of a set of quads with an extra row and column of quads calculated around them

The solved algorithm can be used to iterate through the given set of common vertices shared between any 6  
faces:



From the above example, it can then be concluded that each row of triangles is sequential from one common 
vertex to the next (as V0 shares a common vertex point with faces 1 to 3, and V1 shares a common vertex  
point with faces 3 to 5). This algorithm can then implemented to calculate the unified vertex normals for each  
of the quad faces of the triangle mesh.

void DEFAULT_TERRAIN::ComputeVertexNormals()
{

Vector3 vec[6];
Vector3 vertexNormal;
int triIndex     = 1;
int indexPlusOne = 2;
int indexPlusTwo = 3;
int vertIndex    = 0;

// Computes the offset based on the number of triangles across
int rowOffset = ( ( m_Size + 1 ) * 2 ) - 1;
for( int z = 0; z < m_Size; z++ )
{

for( INT x = 0; x < m_Size; x++ )
{

indexPlusOne = triIndex + 1;
indexPlusTwo = triIndex + 2;
// Get the three triangles below the vertex
vec[0] = m_TerrainNormals[ triIndex ];
vec[1] = m_TerrainNormals[ indexPlusOne ];
vec[2] = m_TerrainNormals[ indexPlusTwo ];
// Get the three triangles above the vertex
 vec[3] = m_TerrainNormals[ rowOffset + triIndex ];

         vec[4] = m_TerrainNormals[ rowOffset + indexPlusOne ];
   vec[5] = m_TerrainNormals[ rowOffset + indexPlusTwo ];
// Sum the vectors and then divide by 6 to average them
vertexNormal = (vec[0] + vec[1] + vec[2] + vec[3] +      

vec[4] + vec[5]) / 6;
vertexNormal = vertexNormal.Normalize(vertexNormal);

// Assign the normals to the stored vertex normals
m_TerrainNormals[vertIndex] = vertexNormal;
// Increment the triangle and vertex indices
triIndex += 2;
vertIndex++;

}
triIndex += 2;

}
}



Note that the row offset for each of the calculated vertex normals is defined as:

int rowOffset = ( ( m_Size + 1 ) * 2 ) - 1;
The reason for this is that the defined triangleIndex counter is used to iterate through the given terrain quad  
faces, moving right and indexing three triangle faces of each row of triangles, which define the bottom three 
faces of the common vertex point that is shared between a given set of 6 faces. However, the top three faces 
of this given set need to be accounted for as well, therefore, the above rowOffset counter is used to index the 
upper three quad surface faces of the set of 6  faces that share a common vertex.

The end result is a dramatic improvement in the shading of the terrain mesh surface:

  

Fig 23: The final result of the MWE algorithm implementation. Here, both the surface normals and the  
surface vertex normals are calculated.



Fig 24: Displaying the vertex normals of each of the common vertices shared by each set of six faces.

Fig 25: A more clearer example of the above, using wireframe display.



Rendering the final scene

This section will briefly outline each of the other components of the application which contribute to the final 
interactive 3D scene.

Setting up and rendering the scene

The final rendered OpenGL scene is setup with the following parameters:

//Scene rendering setup
glShadeModel(GL_SMOOTH);
glClearColor(0.3f, 0.4f, 0.2f, 1.0f);
glClearDepth(1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
glEnable(GL_LIGHTING);
glEnable(GL_TEXTURE_2D);
glEnable(GL_CULL_FACE);
//lighting 1 setup
glLightfv(GL_LIGHT1, GL_AMBIENT,  Light_Ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE,  Light_Diffuse);
glEnable(GL_LIGHT1);

//Setup the fog
glFogi(GL_FOG_MODE, GL_EXP2); 
glFogfv(GL_FOG_COLOR, fog_color); 
glFogf(GL_FOG_DENSITY, fog_density); 
glHint(GL_FOG_HINT, GL_LINEAR); 

//Setup the texturing parameters
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

The basic setup of these scene above includes most of the active parameters used by OpenGL. Some of the 
parameters are enabled and disabled depending in what other functions and context they are called.

The setup of the scene does the following:

- Enables smooth shading of all the rendered 3D geometry in the scene (per-vertex lighting)
- Enables frustum culling for backfaces of rendered triangles
- Enabled lighting
- Enables texturing
- Enables simple linear fog
- Enables depth testing  (render order sorting)
- Enables linear filtering of applied 2D texture maps (making use of mipmapping).



The fog and lighting in the scene is setup with the following parameter values:

//Lighting global parameter variables
GLfloat Light_Ambient[] = {0.4f, 0.4f, 0.4f, 1.0f};
GLfloat Light_Diffuse[] = {0.6f, 0.4f, 0.4f, 1.0f};
GLfloat Light_Position[] = {0.0f, 1000.0f, -200.0f, 1.0f};

//Fog global parameter variables
GLfloat fog_density = 0.008f;
GLfloat fog_color[4] = {0.4f, 0.2f, 0.2f, 0.3f};

This gives the lighting colour a rusted red/murky orange shading colour, which is used to apply shading to 
the surfaces of the geometry in the rendered 3D scene. 

The fog parameters create a dark red linear fog colour, that is of average thickness.

Using Skyboxes

One final part of the coursework that was implemented as a feature was skybox rendering. Making use of  
skyboxes allows rendering scenes to present the user with perceived depth and perspective, making the 
scene look bigger (by making it look like it is a smaller part of something). 

A skybox is a six sided cube that is textured from the inside. It is not lit, and outside faces of it are not  
rendered. Since the skybox is projected from the origin of where it placed, it can be of unit size. The way the 
skybox is projected in the final rendered scene is the most important aspect of the skybox implementation.

The skybox is drawn before the camera transformations are calculated, and before the rest of the scene is  
drawn. What this in turn produces is an effect in which the skybox will always be drawn in the background. 
Since the GL_DEPTH_TEST is disabled for skybox rendering, the z-depth of the skybox is always calculated 
at a constant value, therefore it is either always projected on top of everything in the scene (at the near plane 
of the viewing frustum, with the z depth value set to 0), or behind everything else, with its depth still set to 0.  

Finally, use the GL_CLAMP extension parameter is used to clamp the texture edges of the skybox to each of  
the cube faces. This prevents from seams showing up at the edges of the skybox texture. 

One final note to mention, is that the camera Loo() function must be called every time the skybox is drawn.  
This is to make sure the camera is always looking at the skybox.  Then, the skybox is translated around the  
current camera position of the user. This allows the user to view the skybox from all sides and angles.

Fig 26: An example of a skybox.



Below is a truncated example of the implementation of the skybox:

void DEFAULT_TERRAIN::CreateSkyBox()
{

glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glPushMatrix();

glLoadIdentity();

//The tricky bit...
//First, make sure the camera is always looking at the skybox
g_Camera.Look();

//Then  translate the skybox around the current camera position
//Disabling  the  depth  testing  will  then  make  the  skybox  seem  
//infinitely large (see below In DrawScene())
glTranslatef(g_Camera.GetPosX(),g_Camera.GetPosY(), g_Camera.GetPosZ());
//Set the skybox colour to white
glColor3f(255.0f, 255.0f, 255.0f);
//for each of the skybox faces
//bind the relative texture
//construct a quad (of unit length)

glPopMatrix();

//glDisable(GL_TEXTURE_2D);//temp,  remove  once  terrain  gets  
//textured
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);

} 



Coursework Review and Critical Analysis

This section outlines the final review and critical analysis of the produced coursework. 

Shortcomings

The application does not feature multitexturing, as it was originally planned. The reason for this this is that 
working  with  the  extensions  needed  by  OpenGL to  perform  multitexturing  was  rather  complicated  to  
implement. The complicated part involved setting up GLEW to handle the needed extensions. This caused 
numerous compile errors, and when the program did finally compile, no textures were rendered. It was then  
decided to  rather  focus on clearly  understanding and implementing the basic  functional  features of  the 
coursework application, rather then spending time on something that is not really necessary for the final  
application.

The second shortcoming was the lack of collision detection. Originally, spherical bounding volumes were to  
be implemented for collision checking between the users camera and scene geometry. However, due to time 
constraints associated with implementing the MWE algorithm, the implementation of collision detection was 
neglected.  

Future work

The future work on the project will include the following feature additions/improvements:

- Implementation of a game factory class for a cleaner project setup and OOP functionality.
- Implementation of spherical collision between the users camera and scene geometry.
- Fully re-written rendering code that will completely replace the deprecated FFP rendering code with GLSL 
programmable shading functionality.
- Shader based multitexturing.
- Shader based per-pixel lighting (implementation of a true Phong lighting model).
- Larger terrains (1024x1024 heightmap)
- Implementation of the ROAM rendering algorithm for dynamic terrain LOD adjustment.

Conclusion

The design and development of the second semester OpenGL coursework application was a very steep 
learning curve that proved to be a fruitful learning experience. Much has been learned about the use of  
OpenGL and object orientated programming, as well dealing with larger projects with multiple files. 

The  work  done for  and lessons learnt  from this  coursework  act  as  stepping stones  towards  a  path  in  
becoming a professional in real time 3D graphics programming. 
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